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Abstract: Speckle is a kind of noise commonly found in ultrasound images (UIs). Although traditional
local operation-based methods, such as bilateral filtering, perform well in de-noising normal natural
images with suitable parameters, these methods may break local correlations and, hence, their
performance will be highly degraded when applied to UIs with high levels of speckle noise. In this
work, we propose a new method, based on superpixel segmentation and detail compensation,
to reduce UI speckle noise. In particular, considering that superpixel segmentation has the advantage
of adhering accurately to the boundaries of objects or local structures, we propose a superpixel version
of bilateral filtering to better protect the local structure during de-noising. Additionally, a human
visual system (HVS)-inspired strategy for spatial compensation is introduced, in order to recover
sophisticated edges as much as possible while weakening the high-frequency noise. Experiments on
synthetic images and real UIs of different organs show that, compared to other methods, the proposed
strategy can reduce ultrasound speckle noise more effectively.
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1. Introduction

Ultrasound images (UI) are becoming more and more popular in clinical diagnosis due to their
economical and practical advantages. However, due to the eliminative or constructive interference
between different ultrasonic waves during the image generation phase, the collected UIs inevitably
contain speckle-patterned noise. Affected by the speckle noise, UIs always exhibit low resolution,
which raises the difficulty of identification and diagnosis in clinical practice. Furthermore, the accuracy
of many tasks designed to assist diagnosis, such as image segmentation [1] or detection and
classification [2], will also be degraded by the speckle noise. How to reduce the noise effects while
effectively preserving the image details is becoming a challenging problem.

Many methods have been proposed to solve this problem, and most de-noising methods try to
infer the true images based on the information redundancy character of the noisy images. For example,
transform domain methods are mainly based on the assumption that an image can be sparsely
represented by basic components, and so the noise is uniformly spread throughout the coefficients in
the transform domain [3]. The useful details are concentrated in the largest parts of the high frequency
components, while the noise exists in smaller ones; so, we can use some shrinking strategies to remove
or reduce the noise. However, these kinds of methods face the risk of introducing pseudo-Gibbs
artifacts when using a hard-shrinking strategy, or of over-smoothing when using a soft-shrinking
strategy. As an interesting solution, Farouj et al. proposed a data-driven method to adapt the wavelet
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threshold paradigm [4]. An extensive review of despeckling methods using various transformation
techniques can be found in [5].

Along another line, the commonly used spatial domain methods [6–9] use local statistics to
represent the information of the recovered images. These methods are often based on the multiplicative
speckle model. The most successful methods among them are anisotropic diffusion [9] and the bilateral
filter [6], which are all well-known due to their good ability for preserving edges. However, these kinds
of methods corrupt the correlations between neighboring pixels, and thus perform badly for images
with strong noise [3,10]. Inspired by the idea of decreasing pixel variation in homogenous regions
while maintaining (or improving) the differences in the mean values of different regions, Tay et al.
developed a squeeze box filter (SBF) to remove speckle noise [11].

Moreover, another group of sparse representation methods—namely non-local methods—has
been proposed, in order to break the local dependence. In general, these methods use the property of
information redundancy among similar patches to reduce the noise [12,13]. The common difficulty in
these kinds of methods is how to find the candidate patches, as unsuitable candidate patches greatly
reduce the de-noising performance, especially for the ultrasound images with strong noise. Recently,
Zhu et al. [14] used a guidance image, derived from the windowed inherent variation measure [15],
to overcome this problem. Furthermore, Yang et al. combined local and non-local properties and used
the local statistics to help the selection of similar patches [16]. Santos et al. developed a modified
version of the efficient block-matching collaborative filtering (BM3D) de-speckling method, based on
the well-known statistical divergences [17]. Recently, Yaseen Jabarulla et al. proposed a multiplicative
speckle suppression technique, based on sparse representation over dictionary learning [18].

Non-local methods always use a square window to search for similar patches. However, this
strategy is not always suitable for edge regions. Additionally, the patch size needs to be pre-learned
and then fixed for the test images. Based on the superpixel properties around the region edges,
Li et al. [19] proposed a method of superpixel-guided non-local means for natural image noise
reduction. Superpixel models have also been introduced to estimate the image noise level [20,21].
As the superpixels can be used to segment the images effectively, using the local statistics of superpixels
to recover the images may be another feasible way for speckle noise reduction from ultrasound images.

In this paper, we propose a new ultrasound speckle noise reduction method, based on the
strategies of superpixel reconstruction and spatial compensation. Specifically, we introduce the
superpixel version of bilateral filtering to realize speckle noise reduction. Furthermore, a human visual
system (HVS)-inspired model is proposed to realize the spatial compensation, in order to recover the
sophisticated details effectively.

The rest of the paper is organized as follows. In Section 2, we introduce our proposed despeckling
model. Then, we validate the effectiveness of our approach in Section 3 and, finally, present the
discussion and conclusion in Section 4.

2. Proposed Superpixel-Based Model

The proposed method mainly consists of three steps: sparsification, reconstruction, and
compensation. Figure 1 shows the flowchart of the proposed method.
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Figure 1. Flowchart of the proposed method.

2.1. Image Sparsification

As mentioned in Section 1, commonly used superpixel methods, such as the simple linear
iterative clustering (SLIC)-based superpixel generating algorithm [22], have the advantage of adhering
accurately to the boundaries of objects or local structures for images with low-level noise. However,
the performance of SLIC segmentation will be highly degraded for ultrasound images which contain
high-level noise. In order to always obtain robust SLIC segmentation for ultrasound images, we first
adopt the median filter to pre-process the input ultrasound images. The purpose of this pre-processing
is to reduce the influence of high-frequency noises (not speckles) and improve the robustness of SLIC
segmentation. Therefore, we set the median filter to a small size; namely 3× 3.

After the SLIC superpixel segmentation, we keep only the central points of all the superpixels and
the label of each pixel and, for each superpixel, we reassign the value of its center as the median value
of all the pixels within the superpixel. Now, we obtain a de-noised sparse distribution to sparsely
represent the input image. We will use this sparse distribution, later, to reconstruct the low-frequency
component of the given ultrasound image.

2.2. Image Reconstruction

Similar to the bilateral filtering, for each pixel at position (i, j) that needs to be reconstructed,
we use the following two measures as the weights to reconstruct its value: (1) the distance of the
current pixel at (i, j) to the center of its neighboring superpixel at (k, l), and (2) the intensity difference
between the center of the superpixel at (i, j) and the center of its neighboring superpixel at (k, l).
Figure 2 shows a graphical illustration of the reconstruction, and the reconstructed image Ilow(i, j) can
be mathematically obtained as

ω(i, j, k, l) = exp

(
− (i− k)2 + (j− l)2

2σ2
d

− ||I(i, j)− I(k, l)||2
2σ2

r

)
, (1)

Ilow(i, j) =
∑k,l I(k, l)ω(i, j, k, l)

∑k,l ω(i, j, k, l)
, (2)
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where I(i, j) and I(k, l) are, respectively, the intensity values for the centers of the superpixels at (i, j)
and (k, l). It is clear that ω(i, j, k, l) represents the combined weight of the neighboring superpixel at
(k, l) with respect to the current pixel at (i, j). As is typically done, we only pick the four neighboring
superpixels in the up, down, left, and right directions, respectively. Furthermore, σd and σr are
the scale parameters controlling the smoothing effect; higher values of which produce smoother
reconstructed images. We empirically set σd = 4 and σr = 0.3 for all of the experiments in this work,
as explained next.

In this work, we set appropriate values of σd and σr in Equation (1) to prevent the unbalance of the
distance- and intensity-related weightings for image reconstruction instead of a simple normalization.
This is mainly due to a technical consideration that the setting of σd and σr should depend on the
superpixel size in this study. For example, according to the analysis and discussion in Section 3.1,
we set the superpixel size as about 7 pixels in this work. Therefore, for the image reconstruction with
four neighboring superpixels, the maximal distance between the current point and the neighboring
superpixel centers (i.e., the term

√
(i− k)2 + (j− l)2 in Equation (1)) is about 10 pixels (along

the diagonal line). Therefore, we set σd = 4 to control the decrease rate of the distance-related
weighting. On the other hand, the maximum intensity difference between two pixels (i.e., the term
||I(i, j)− I(k, l)|| in Equation (1)) is 1.0. Therefore, we set σr = 0.3 to control the decrease rate of the
intensity-related weighting.

In summary, the setting of σd = 4 and σr = 0.3 used in this work can well balance the distance-
and intensity-related weightings (i.e., with similar decreasing rates) when reconstructing the image
with the superpixel size as about 7 pixels. Please note that as mentioned above, the setting of σd and
σr should be dependent on the superpixel size. Large σd and σr values are required for the image
segmentation with large superpixel sizes, and vice versa.

C1 C2

A

C3 C4

1
w 2

w

3
w 4

w

Figure 2. Illustration of the image reconstruction. A represents the current pixel to be reconstructed
and C1, C2, C3, and C4 represent the four superpixel centers in a 3× 3 squared grid around A.

2.3. Image Compensation

The operations described above can be regarded to be a superpixel version of bilateral filtering.
It is clear that the image details with a scale smaller than the superpixel size will be over-smoothed
incorrectly. To precisely maintain useful image details, we introduce a compensation operation.
It should be noted that compensation is a commonly used strategy for fine-tuning ultrasound image
details [14]. However, differing from others, our compensation strategy is HVS-inspired, which is
described below.

As the reconstructed image can be regarded as the low frequency component of the input
ultrasound image, we can subtract the low frequency component from the input image to get the high
frequency component of the input image:
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Ihigh(x, y) = I(x, y)− Ilow(x, y). (3)

This high frequency component, Ihigh(x, y), contains both the useful details and the unwanted
high-frequency noise, which are difficult to separate from each other. In this work, we propose a
HVS-inspired solution to separate and remove the unwanted high-frequency noise from the useful
details of Ihigh(x, y). Our solution is based on the following evidence from the field of visual
neuroscience: (1) As the first stage of the HVS, the retina processes the visual information, from the
bipolar cells to the ganglion cells, along the ON and OFF pathways. (2) The ON and OFF pathways
process the bright and dark components, respectively. (3) The responses of the bipolar and ganglion
cells in the retina show center-surround opponent patterns within their receptive fields (RFs).

Inspired by these biological findings, we first separate the high-frequency component into bright
and dark parts, which are written as

Ib(x, y) = Ihigh(x, y), where Ihigh(x, y) >= 0 (4)

Id(x, y) = −Ihigh(x, y), where Ihigh(x, y) < 0. (5)

Then, we use the non-classical receptive field (nCRF) model to separately process these two parts
of the high frequency component. Suggested by the physiological finding that some retinal ganglion
cells (RGCs) in cats respond quite weakly to the stimulus of dispersedly distributed dots, in comparison
to compactly distributed dots (e.g., where the dispersedly distributed dots are compacted into a
line) [23], we have built a nCRF model based on RGCs, in our previous works, for the tasks of
image de-hazing and color constancy [24,25]. As for the RF’s spatial structure, a nCRF model of
ON-type contains an excitatory center and an inhibitory surround with a disinhibition property
(see Figure 3)—that is, the RF surround is composed of many sub-units, and these sub-units first inhibit
each other; then, the inhibited sub-units in the RF surround inhibit the neuronal response elicited by
the stimulus in the RF center. The neuronal processing can be formulated as follows.

RF Surround

with subunits

Subunit

j

Subunit

k

Subunit

i

RF

Center

Inhibition among subunits

Inhibition from surround

to center

+

+

++

Figure 3. Illustration of the spatial structure of the non-classical receptive field (nCRF) model of
ON-type, containing an excitatory center and an inhibitory surround with multiple sub-units.

We, first, define a two-dimensional (2D) Gaussian function with a scale of σ as

g(x, y; σ) =
1

2πσ2 exp(−(x2 + y2)/(2σ2)). (6)

For the bright part of the high-frequency component (i.e., Ib(x, y)), the ON-type nCRF model is
employed to compute the neuronal response as

Son(x, y) = H{Ib(x, y)⊗ (g(x, y; σc)− g(x, y; σs))}, (7)
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SSon(x, y) = ∑
(i,j)∈surround

Son(i, j), (8)

Ron(x, y) = H{Ib(x, y)− won(x, y) · SSon(x, y)}, (9)

where Son(x, y) is strength of the subunit at (x, y) after being inhibited by its neighboring subunits,
using the convolution operation with a difference of Gaussian (DoG) kernel; σc and σs are, respectively,
the scales of the two Gaussians (in this study, we experimentally set σc = 4 and σs as three times σc,
based on electrophysiological observations [26]); ⊗ denotes the convolution operation; and H{} is
used to guarantee that the neuronal responses should not be negative (i.e, H{s} = s while s > 0 and
H{s} = 0 while s ≤ 0). According to the nCRF model, obtaining negative signals after surround
inhibition means that these pixels receive strong inhibition and, hence, they should be regarded as
speckles and be removed. Therefore, setting the negative responses to zeros does not just achieve
despeckling, but also avoid the further processing of those potential interference of negative signals.

It is clear that SSon(x, y) is the total strength of the whole RF surround, and that Ron(x, y) is
the final neuronal response by subtracting the surround modulation from the response of RF center.
Furthermore, won(x, y) is a spatially varying weight, used to control the contribution of surround
inhibition to the center, which is computed as

won(x, y) = m/CCon(x, y), (10)

where m is a (global) constant and CCon(x, y) is the mean of Ib(x, y) within the RF (including the center
and its surround) centered at (x, y). For all the synthetic images tested in this work, we set m = 0.2,
and, for all the real ultrasound images, we set m = 0.05. Let us, first, assume that the noise is at the
same level across the whole image. Hence, there would be more useful signals within the brighter
regions with higher Ib(x, y) values, and a higher Ib(x, y) results in a higher CCon(x, y) and, hence,
a lower won(x, y), which contributes to the preservation of the useful signals by reducing the surround
inhibition. Meanwhile, there would be less useful signals within the darker regions with lower Ib(x, y)
values, which results in a higher won(x, y) and, hence, stronger inhibition of the unwanted signals
within these regions. Such spatially adaptive inhibition makes the nCRF-based compensation work
well in preserving details and suppressing noise.

Similarly, for the dark part of the high-frequency component (i.e.,Id(x, y)), the OFF-type nCRF
model is employed to compute the neuronal response Ro f f (x, y), as

So f f (x, y) = H{Id(x, y)⊗ (g(x, y; σc)− g(x, y; σs))}, (11)

SSo f f (x, y) = ∑
(i,j)∈surround

So f f (i, j), (12)

Ro f f (x, y) = H{Id(x, y)− wo f f (x, y) · SSo f f (x, y)}, (13)

with
wo f f (x, y) = m/CCo f f (x, y), (14)

where m is a (global) constant same as the above, and CCo f f (x, y) is the mean of Id(x, y) within the RF
(including the center and its surround) centered at (x, y).

We, then, obtain the modified detail image Im(x, y) as the sum of the processed ON and OFF path
signals. We integrate the ON and OFF path outputs as

Im(x, y) = Ron(x, y)− Ro f f (x, y). (15)
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Then, we combine the compensated detail image Im(x, y) containing the high-frequency
component and the reconstructed image Ilow(x, y) containing the low-frequency component as the
final output Io(x, y):

Io(x, y) = Im(x, y) + Ilow(x, y). (16)

3. Experiments

In this section, we will first discuss the influence of the parameter of superpixel size on the
final reconstructed image. Then, we will specifically compare the differences between the superpixel
version of bilateral filtering and normal bilateral filtering. Finally, we will validate the effectiveness
of the proposed model on both synthetic and real ultrasound images, in comparison with several
state-of-the-art methods.

3.1. Influence of the Superpixel Size

As the main parameter involved in the proposed superpixel version of bilateral filtering,
the superpixel size may greatly influence the final processing results. Generally speaking, segmentation
with large superpixels can only capture the coarser details or edges of size larger than the superpixel
size, and the finer details would be smoothed after reconstruction. In contrast, segmentation with small
superpixels can keep more fine details but degrades the de-noising ability and raises the computational
cost. Figure 4 shows the reconstructed image patches, derived from Figure 1, with different superpixel
sizes. We can clearly see that, with an increase of superpixel size, a mosaic pattern gradually appears
in the reconstructed images; which is quite similar to pseudo-Gibbs artifacts. In contrast, smaller
superpixels can capture small edges well, but more noise appears. So, considering the various organs
of different sizes which are contained in the UI images, we experimentally set the superpixel size to 1%
of the minimal size of the horizontal and vertical image sizes, and lower than 7 pixels, in this work.

Figure 4. The reconstructed images with different superpixel sizes (in pixel). From (a–d), the superpixel
sizes are 3, 5, 7, and 9, respectively.

3.2. Tests on Synthetic Images

To validate the effectiveness of the proposed strategy, we conducted our tests on synthetic images.
For quantitative comparison, we first added speckle noise to the clean images by employing the
synthetic speckle noise model [12] on a synthetic image, as shown in Figure 5a. As in Zhu et al. [14],
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the added noise is a multiplicative Gaussian N(0, δ2
s ) noise, where δs controls the noise level, and we

set the noise level as δs = {0.15; 0.2; 0.25; 0.3} on the test synthetic image. Figure 5b illustrates the
corresponding noisy image with δs = 0.3. In addition, we also adopted the Field II toolbox [27,28] to
add speckle noise to another clean image, as shown in Figure 5c, and the corresponding image with
speckle noise is shown in Figure 5d. The Field II toolbox is a program for simulating the image of
ultrasound scanners. It can calculate pulsed pressure fields, and can also handle continuous wave
and pulse-echo cases [27,28]. As we can see, the generated Field II image seems very close to a real
ultrasound image.

(a) (b)

(c) (d)

Figure 5. Illustration of synthetic images with speckle noise added by different methods. (a,c) are two
clean images. (b) is a noisy image of (a), with multiplicative Gaussian noise (with δs = 0.3) added,
and (d) is a noisy image of (c) with speckle noise added using the Field II toolbox [27,28].

We mainly compared our method with two state-of-the-art non-local despeckling methods, the
optimized Bayesian non local means filter (OBNLM) [29] and the non-local low-rank method proposed
by Zhu et al. [14]. As our method employs the superpixel version of bilateral filtering, we also
compared the processing results with those given by the local method of bilateral filtering [6] with
fine-tuned parameters, as a baseline. We adopted two commonly used metrics, peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [30], to quantitatively compare the performance of our
method against others. PSNR is an image quality measure after some modification to the image is
done, and SSIM is used for measuring the structural similarity between two images. Both PSNR and
SSIM are full reference metrics, which means the measurement of image quality is based on an initial
distortion-free image as a reference. Generally, for the speckle reducing task, higher values of PSNR
and SSIM indicate better performance.

From the PSNR and SSIM values listed in Tables 1 and 2, our method performed slightly worse
than the method proposed by Zhu et al. [14] and/or OBNLM [29] on the synthetic image in Figure 5b,
in which the noise was added using the multiplicative Gaussian model, but performed remarkably
better on the synthetic image in Figure 5d, in which the speckle noise was added using the Field II
toolbox [27,28]. We think the observation that our method performs better on the Field II-generated
image is especially promising as, in comparison to the simple multiplicative Gaussian noise model,
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the Field II toolbox has the ability of simulating realistic ultrasound images of human tissue [27,28].
This may enable our method to have a higher chance of better despeckling real ultrasound images in
clinical practice.

Table 1. The peak signal-to-noise (PSNR) metric of various methods on the two synthetic images in
Figure 5.

Method
Figure 5b

Figure 5d
δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Original 23.35 22.26 21.41 21.07 17.73
Bilateral filter 26.32 24.88 23.73 23.31 18.77
OBNLM [29] 27.20 25.77 24.69 24.31 18.19
Zhu et al. [14] 27.10 26.23 25.56 25.24 18.64

Proposed method 26.84 25.59 24.52 24.13 19.20

Table 2. The structural similarity (SSIM) metric of various methods on the two synthetic images in
Figure 5.

Method
Figure 5b

Figure 5d
δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3

Original 0.71 0.69 0.68 0.68 0.28
Bilateral filter 0.95 0.95 0.94 0.93 0.53
OBNLM [29] 0.94 0.92 0.91 0.89 0.39
Zhu et al. [14] 0.96 0.96 0.95 0.94 0.40

Proposed method 0.95 0.94 0.93 0.93 0.61

We also used normal bilateral filtering followed by our compensation strategy, and no clear
improvement was found over the normal bilateral filtering itself in terms of the PSNR and SSIM
metrics. A possible reason is that bilateral filtering breaks the local structures, which are difficult to
recover with our compensation strategy.

3.3. Tests on Real Ultrasound Images

Considering that the synthetic images may not fully cover all of the features of real ultrasound
imaging conditions, we also conducted tests on real ultrasound images. Generally speaking, the noise
levels vary for different organs. Therefore, we selected four representative ultrasound images,
captured at the locations of thyroid, breast, liver, and spleen to show the generalization ability of the
proposed strategy.

Figures 6 and 7 compare the processed results of the different methods. We also show zoomed-in
patches for regions of interest (ROIs), which were curated by physicians for clinical diagnosis
(i.e., the ROIs were picked by a physician in the department of ultrasound imaging), for each image
tested here. For example, a tumor exists in the thyroid image (see the first row of Figure 6), which
needs to be paid more attention to distinguish whether it is benign or not. We can see that the
method of bilateral filtering can effectively reduce the speckle noise, but the processed images are
obviously over-smoothed. In particular, considering that identifying calcification is very helpful for
discriminating whether a tumor is benign or malignant, the over-smoothing of the images makes it
difficult to identify this property of the tumor. In constrast, the images processed by the OBNLM
method [29] exhibited stripe patterns, which made it unable to accurately show the real tissue situation.
A possible reason for this is the inaccurate selection of similar patches in OBNLM, due to the high
level of speckle noise. By contrast, our method and the method proposed by Zhu et al. [14] effectively
reduced the speckle noise while retaining image details. Please note that our method preserved more
details, in comparison to the method of Zhu et al. [14]. A similar phenomenon also happens for other
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the organ images in Figures 6 and 7, which are consistent with the observations from the previous
experiments on the synthetic images.

(a) (b) (c) (d) (e)

Figure 6. Comparison of despeckling results on the thyroid and breast ultrasound images. (a) The
original thyroid and breast ultrasound images and the results by (b) bilateral filter [6], (c) OBNLM [29],
(d) the method of Zhu et al. [14], and (e) the proposed method. The first and third rows list the full-size
images, and the second and fourth rows show the zoomed-in patches containing the regions of interest
(ROIs), marked by the red rectangles in the whole images.

(a) (b) (c) (d) (e)

Figure 7. Comparison of despeckling results on the liver and spleen ultrasound images. (a) The original
liver and spleen ultrasound images and the results by (b) bilateral filter [6], (c) OBNLM [29], (d) the
method of Zhu et al. [14], and (e) the proposed method. The first and third rows list the full-size images,
and the second and fourth rows show the zoomed-in patches containing the regions of interest (ROIs),
marked by the red rectangles in the whole images.

4. Conclusions

In this paper, we proposed a speckle noise reduction (or despeckling) method for ultrasound
images (UIs), based on the strategies of superpixel segmentation and spatial compensation.
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In particular, the technique of superpixel segmentation was used to sparsely code the input image,
which can be regarded as a superpixel version of bilateral filtering. Then, we treated the reconstructed
image from the sparse representation of the superpixel segmentation as the low-frequency component,
and a HVS-inspired spatial compensation was designed to fine-tune the image details that were to be
recovered. Experiments on multiple synthetic and real UIs showed that the proposed method performs
better than the state-of-the-art methods in terms of visual observation and objective metric evaluation.

The merits of our method can be summarized, as follows: (1) Our method employs statistic-based
local processing, but does not destroy the local correlations of the details, as superpixel segmentation
can effectively maintain local structures [31]. This suggests a new way for local statistic methods
to provide reasonable smoothing for further processing. (2) In contrast to those traditional local
methods, which may over-smooth details, a HVS-inspired image processing strategy is specifically
designed in our model, in order to further compensate for and recover the image details. In particular,
the center-surround opponent RF structure can effectively filter out the noise and preserve the wanted
details. In addition, the ON and OFF pathways separately process the bright and dark parts, which
helps to simultaneously recover the details in both the bright and dark regions of the UIs.

Please note that, differing from normal noise reduction tasks, some “speckle noise” in the
ultrasound images are meaningful and are useful in clinical diagnoses. For example, liver fibrosis due
to viral infection or alcohol abuse will cause the lobule to form a fibrous septum. This will lead to
inhomogeneous ultrasound waves when travelling through the abnormal liver parenchyma, which
will form a clinically meaningful speckle pattern in the UIs [32]. So, the compensation strategy we
introduced is very important for effective speckle reduction in real applications.

Considering that superpixel segmentation is a key step in our proposed flowchart, our future
works will be focused on improving its effect when applied to the specific task of UI despeckling.
For example, besides the median filtering we adopted in this work before superpixel segmentation,
other de-noising methods can be used, in order to achieve robust superpixel segmentation in UIs
containing high-level noise. In addition, among many other superpixel segmentation methods, we can
replace the SLIC method with modified superpixel segmentation methods, which may show better
speckle noise tolerance abilities [31].
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